3,962 research outputs found

    An augmented moment method for stochastic ensembles with delayed couplings: II. FitzHugh-Nagumo model

    Full text link
    Dynamics of FitzHugh-Nagumo (FN) neuron ensembles with time-delayed couplings subject to white noises, has been studied by using both direct simulations and a semi-analytical augmented moment method (AMM) which has been proposed in a recent paper [H. Hasegawa, E-print: cond-mat/0311021]. For NN-unit FN neuron ensembles, AMM transforms original 2N2N-dimensional {\it stochastic} delay differential equations (SDDEs) to infinite-dimensional {\it deterministic} DEs for means and correlation functions of local and global variables. Infinite-order recursive DEs are terminated at the finite level mm in the level-mm AMM (AMMmm), yielding 8(m+1)8(m+1)-dimensional deterministic DEs. When a single spike is applied, the oscillation may be induced if parameters of coupling strength, delay, noise intensity and/or ensemble size are appropriate. Effects of these parameters on the emergence of the oscillation and on the synchronization in FN neuron ensembles have been studied. The synchronization shows the {\it fluctuation-induced} enhancement at the transition between non-oscillating and oscillating states. Results calculated by AMM5 are in fairly good agreement with those obtained by direct simulations.Comment: 15 pages, 3 figures; changed the title with correcting typos, accepted in Phys. Rev. E with some change

    Effective traffic management based on bounded rationality and indifference bands

    Get PDF
    Constrained cognitive abilities cause imperfections in drivers' choice behaviour and appear largely systematic and predictable. This study introduces the concept of 'effective control space' to build upon this knowledge as an opportunity to increase the effectiveness of Dynamic Traffic Management (DTM). Within the control space boundaries it is assumed that drivers do not act upon the effects of DTM measures, they behave as being indifferent to them. This study debates that: (i) drivers' ability to detect changes in attributes of their trip or the performance of a traffic system is limited, (ii) drivers make mistakes in estimating the value of such changes and (iii) drivers apply a great diversity of choice patterns but do not necessary adapt their choice. Hence, for some DTM measures to be effective effects should not exceed the control space boundaries, whereas other DTM measures need to give drivers an incentive that exceeds these boundaries. Knowledge on the effective control space may support road authorities to operationalise their measures most effectively. With the theories of indifference bands and decision-making as starting point a theoretical and conceptual framework are provided, supported by a numerical example to demonstrate how application can steer a system towards its optimal state

    Adaptation Reduces Variability of the Neuronal Population Code

    Full text link
    Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among their intervals of events. Here, we employ a master equation for general non-renewal processes to calculate the interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble of spike-frequency adapting neurons this results in the regularization of the population activity and an enhanced post-synaptic signal decoding. We confirm our theoretical results in a population of cortical neurons.Comment: 4 pages, 2 figure

    Phase-locking in weakly heterogeneous neuronal networks

    Full text link
    We examine analytically the existence and stability of phase-locked states in a weakly heterogeneous neuronal network. We consider a model of N neurons with all-to-all synaptic coupling where the heterogeneity is in the firing frequency or intrinsic drive of the neurons. We consider both inhibitory and excitatory coupling. We derive the conditions under which stable phase-locking is possible. In homogeneous networks, many different periodic phase-locked states are possible. Their stability depends on the dynamics of the neuron and the coupling. For weak heterogeneity, the phase-locked states are perturbed from the homogeneous states and can remain stable if their homogeneous conterparts are stable. For enough heterogeneity, phase-locked solutions either lose stability or are destroyed completely. We analyze the possible states the network can take when phase-locking is broken.Comment: RevTex, 27 pages, 3 figure

    Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles

    Full text link
    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincar\'e map associated to the system. We show that for strong interactions the Poincar\'e map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincar\'e map under study, but also to a wide class of general n-dimensional piecewise contractive maps.Comment: 46 pages. In this version we added many comments suggested by the referees all along the paper, we changed the introduction and the section containing the conclusions. The final version will appear in Journal of Mathematical Biology of SPRINGER and will be available at http://www.springerlink.com/content/0303-681

    VLT observations of GRB 990510 and its environment

    Get PDF
    We present BVRI photometry and spectrophotometry of GRB990510 obtained with the ESO VLT/Antu telescope during the late decline phase. Between days 8 and 29 after the burst, the afterglow faded from R=24.2 to ~26.4. The spectral flux distribution and the light curve support the interpretation of the afterglow as synchrotron emission from a jet. The light curve is consistent with the optical transient alone but an underlying SN with maximum brightness R>27.4 or a galaxy with R>27.6 (3-sigma upper limits) cannot be ruled out. To a 5-sigma detection threshold of R=26.1, no galaxy is found within 6'' of the transient. A very blue V~24.5 extended object which may qualify as a starburst galaxy is located 12'' SE, but at unknown redshift.Comment: 5 pages A&A Latex, accepted for publication in A&A Letter
    corecore